
Various Programming Hints

Peter Seiderer for http://www.ciselant.de

February 23, 2012

1 Qt qmake And Subversion svnversion

Incorporate a global Subversion1 revision number as build/revision version
in a Qt2 project.

Subversion has the ability to substitute keywords3 e.g. the keyword
’Revision’ in a file will be expanded to the last known revision in which
the file changed. If you want some GlobalRev as build/revision number
in your project some extra work has to be done using the Subversion tool
svnversion4.

The following describes four different solutions for a Qt qmake based
project checked into a Subversion repository. The first three solutions are
based on a generated header ’revision.h’ included from the main file ’exam-
ple.cpp’. The fourth is based on a define directive at compile time.

1.1 Include file approaches

All three solutions are based on the same simple example files. A simple
include file version.h (with a given define for the version string):

1 #ifndef version_h

2 #define version_h

3 #define VERSION "1.2.3"

4 #endif

A C++ file example.cpp with the main entry point printing the string ’ver-
sion: <version>-build-<revision>’ to stdout:

1 #include "version.h"

2 #include "revision.h"

3 #include <stdio.h>

4

1http://subversion.apache.org
2http://qt.nokia.com
3http://svnbook.red-bean.com/en/1.7/svn.advanced.props.special.keywords.html
4http://svnbook.red-bean.com/en/1.7/svn.ref.svnversion.re.html

1

http://www.ciselant.de
http://www.ciselant.de/projects/programming/qmake_svnversion/version.h
http://www.ciselant.de/projects/programming/qmake_svnversion/example.cpp
http://subversion.apache.org
http://qt.nokia.com
http://svnbook.red-bean.com/en/1.7/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.7/svn.ref.svnversion.re.html

5 int main(int argc, char* argv []) {

6 printf("version: %s-build-%s\n", VERSION, REVISION);

7 return 0;

8 }

1.1.1 Simple solution (update on every build)

The qmake project file example1.pro creates an up to date revision.h file
with svnversion generated revision string on every build:

1 PRE_TARGETDEPS += $$OUT_PWD/revision.h

2

3 HEADERS = version.h

4 SOURCES = example.cpp

5 TARGET = example

6

7 QMAKE_EXTRA_TARGETS += revtarget

8 revtarget.target = $$OUT_PWD/revision.h

9 revtarget.commands = @echo \"updating file $$revtarget.target\"; \

10 echo -e \"/* generated file (do not edit) */\\n\" \

11 \"$$LITERAL_HASH ifndef revision_h\\n\" \

12 \"$$LITERAL_HASH define revision_h 1\\n\" \

13 \"$$LITERAL_HASH define REVISION \\\"‘svnversion -n $$PWD‘\\\"\\n\" \

14 \"$$LITERAL_HASH endif\" > $$revtarget.target

15 revtarget.depends = FORCE

16 QMAKE_DISTCLEAN += $$revtarget.target

Example of a generated revision.h file:

1 /* generated file (do not edit) */

2 # ifndef revision_h

3 # define revision_h 1

4 # define REVISION "828"

5 # endif

Example output:

version: 1.2.3-build-828

for a subversion working directory up to revision r828, or

1.2.3-build-828M

with local modifications.
The downside of this solution is the every time rebuild of the executable

because of the generated file ’revision.h’.

2

http://www.ciselant.de/projects/programming/qmake_svnversion/example1.pro
http://www.ciselant.de/projects/programming/qmake_svnversion/example_revision.h

1.1.2 Better solution (update only in case a relevant file changed)

The main thing changed is line 15, the dependency is changed from ’FORCE ’
to ’$$SOURCES $$HEADERS $$FORMS $$PWD/example2.pro’ (mind the
’$$PWD’ changes which are needed for an out of tree build). Now a new revi-
sion.h is generated each time one of the relevant source/header/forms/project
file is changed, see example2.pro:

1 PRE_TARGETDEPS += $$OUT_PWD/revision.h

2

3 HEADERS = $$PWD/version.h

4 SOURCES = $$PWD/example.cpp

5 TARGET = example

6

7 QMAKE_EXTRA_TARGETS += revtarget

8 revtarget.target = $$OUT_PWD/revision.h

9 revtarget.commands = @echo \"updating file $$revtarget.target\"; \

10 echo -e \"/* generated file (do not edit) */\\n\" \

11 \"$$LITERAL_HASH ifndef revision_h\\n\" \

12 \"$$LITERAL_HASH define revision_h 1\\n\" \

13 \"$$LITERAL_HASH define REVISION \\\"‘svnversion -n $$PWD‘\\\"\\n\" \

14 \"$$LITERAL_HASH endif\" > $$revtarget.target

15 revtarget.depends = $$SOURCES $$HEADERS $$FORMS $$PWD/example2.pro

16 QMAKE_DISTCLEAN += $$revtarget.target

1.1.3 Perfect solution (update every time the svn status changes)

The qmake project file example3.pro:

1 PRE_TARGETDEPS += $$OUT_PWD/revision.h

2

3 HEADERS = version.h

4 SOURCES = example.cpp

5 TARGET = example

6

7 LITERAL_DOLLAR = $

8 QMAKE_EXTRA_TARGETS += revtarget

9 revtarget.target = $$OUT_PWD/revision.h

10 revtarget.commands = @SVNVERSION=\\\"‘svnversion -n $$PWD‘\\\"; \

11 SVNFILEVERSION=‘if [-e $$revtarget.target]; then \

12 grep REVISION $$revtarget.target | \

13 awk \’{ print $${LITERAL_DOLLAR}$${LITERAL_DOLLAR}4 }\’ ; \

14 else echo unknown; fi;‘; \

15 if [$${LITERAL_DOLLAR}$${LITERAL_DOLLAR}SVNVERSION == \

16 $${LITERAL_DOLLAR}$${LITERAL_DOLLAR}SVNFILEVERSION]; \

3

http://www.ciselant.de/projects/programming/qmake_svnversion/example2.pro
http://www.ciselant.de/projects/programming/qmake_svnversion/example3.pro

17 then \

18 echo \"svn status not changed - keep file $$revtarget.target\"; \

19 else \

20 echo \"svn status changed - updating file $$revtarget.target\"; \

21 echo -e \"/* generated file (do not edit) */\\n\" \

22 \"$$LITERAL_HASH ifndef revision_h\\n\" \

23 \"$$LITERAL_HASH define revision_h 1\\n\" \

24 \"$$LITERAL_HASH define REVISION \\\"‘svnversion -n $$PWD‘\\\"\\n\" \

25 \"$$LITERAL_HASH endif\" > $$revtarget.target; \

26 fi

27 revtarget.depends = FORCE

28 QMAKE_DISTCLEAN += $$revtarget.target

This is the only solution which forces a recompile in case of a svn status
update without file update (e.g. ’svn update’ or ’svn commit’).

1.2 Define directive approach

This one uses a slightly different file example.cpp (version.h is recycled un-
changed) with changes to print a given defined ’REVISION’ string (or ’un-
known’ otherwise):

1 #include "version.h"

2 #include <stdio.h>

3

4 #ifndef REVISION

5 #define REVISION "unknown"

6 #endif

7

8 int main(int argc, char* argv []) {

9 printf("version: %s-build-%s\n", VERSION, REVISION);

10 return 0;

11 }

1.2.1 Simple define based solution

The define for ’REVISION’ is set on compile time (see line 1) of the qmake
project file example4.pro:

1 DEFINES += "REVISION=\\\"‘svnversion -n $$PWD‘\\\""

2

3 HEADERS = version.h

4 SOURCES = example.cpp

5 TARGET = example

6

4

http://www.ciselant.de/projects/programming/qmake_svnversion_define/example.cpp
http://www.ciselant.de/projects/programming/qmake_svnversion/version.h
http://www.ciselant.de/projects/programming/qmake_svnversion_define/example4.pro

This approach works only for very small projects (like the given example
project) with only one source file. It will fail to update the revision string
in case of a multi source file project if the main file does not depend on all
other ones.

5

	Qt qmake And Subversion svnversion
	Include file approaches
	Simple solution (update on every build)
	Better solution (update only in case a relevant file changed)
	Perfect solution (update every time the svn status changes)

	Define directive approach
	Simple define based solution

