Various Programming Hints

Peter Seiderer for http://www.ciselant.de

February 23, 2012

1 Qt gqmake And Subversion svnversion

! revision number as build /revision version

Incorporate a global Subversion
in a Qt2 project.

Subversion has the ability to substitute keywords® e.g. the keyword
'Revision’ in a file will be expanded to the last known revision in which
the file changed. If you want some GlobalRev as build/revision number
in your project some extra work has to be done using the Subversion tool
svnversion?.

The following describes four different solutions for a Qt gmake based
project checked into a Subversion repository. The first three solutions are
based on a generated header ‘revision.h’ included from the main file ’exam-
ple.cpp’. The fourth is based on a define directive at compile time.

1.1 Include file approaches

All three solutions are based on the same simple example files. A simple
include file version.h (with a given define for the version string):

#ifndef version_h
##define version_h
#define VERSION "1.2.3"
#endif

W N

A C++ file example.cpp with the main entry point printing the string ’ver-
sion: <version>-build-<revision>’ to stdout:

1 #include "version.h"

2 #include "revision.h"
3 #include <stdio.h>
4

"http://subversion.apache.org
*http://qt.nokia.com

3http://svnbook.red-bean.com/en/1.7/svn.advanced.props.special . keywords.html

“http://svnbook.red-bean.com/en/1.7/svn.ref .svnversion.re.html

http://www.ciselant.de
http://www.ciselant.de/projects/programming/qmake_svnversion/version.h
http://www.ciselant.de/projects/programming/qmake_svnversion/example.cpp
http://subversion.apache.org
http://qt.nokia.com
http://svnbook.red-bean.com/en/1.7/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.7/svn.ref.svnversion.re.html

int main(int argc, char*x argv []1) {
printf ("version: %s-build-%s\n", VERSION, REVISION);
return O;

0 J O Ot

1.1.1 Simple solution (update on every build)

The gqmake project file examplel.pro creates an up to date revision.h file
with svnversion generated revision string on every build:

PRE_TARGETDEPS += $$0UT_PWD/revision.h

1

2

3 HEADERS = version.h

4 SOURCES example.cpp
5 TARGET = example
6

7

8

9

QMAKE_EXTRA_TARGETS += revtarget
revtarget.target = $$0UT_PWD/revision.h
revtarget.commands = @echo \"updating file $$revtarget.target\"; \

10 echo -e \"/* generated file (do not edit) */\\n\" \

11 \"$$LITERAL_HASH ifndef revision_h\\n\" \

12 \"$$LITERAL_HASH define revision_h 1\\n\" \

13 \"$SLITERAL_HASH define REVISION \\\"‘svnversion -n $$PWD‘\\\"\\n\" \
14 \"$$LITERAL_HASH endif\" > $$revtarget.target

15 revtarget.depends = FORCE
16 ~ QMAKE_DISTCLEAN += $$revtarget.target

Example of a generated revision.h file:

/* generated file (do not edit) */
ifndef revision_h

define revision_h 1

define REVISION "828"

endif

T W N =

Example output:

version: 1.2.3-build-828

for a subversion working directory up to revision r828, or
1.2.3-build-828M

with local modifications.
The downside of this solution is the every time rebuild of the executable
because of the generated file revision.h’.

http://www.ciselant.de/projects/programming/qmake_svnversion/example1.pro
http://www.ciselant.de/projects/programming/qmake_svnversion/example_revision.h

1.1.2 Better solution (update only in case a relevant file changed)

The main thing changed is line 15, the dependency is changed from ’FORCE’
to '$$SOURCES $$HEADERS $$FORMS $$PWD /example2.pro’ (mind the
'$$PWD’ changes which are needed for an out of tree build). Now a new revi-
sion.h is generated each time one of the relevant source/header /forms/project
file is changed, see example2.pro:

PRE_TARGETDEPS += $$0UT_PWD/revision.h

1

2

3 HEADERS = $$PWD/version.h

4 SOURCES = $$PWD/example.cpp
5 TARGET = example
6

7

8

9

QMAKE_EXTRA_TARGETS += revtarget
revtarget.target = $$0UT_PWD/revision.h
revtarget.commands = @echo \"updating file $$revtarget.target\"; \

10 echo -e \"/* generated file (do not edit) */\\n\" \

11 \"$$LITERAL_HASH ifndef revision_h\\n\" \

12 \"$$LITERAL_HASH define revision_h 1\\n\" \

13 \"$SLITERAL_HASH define REVISION \\\"‘svnversion -n $$PWD‘\\\"\\n\" \
14 \"$$LITERAL_HASH endif\" > $$revtarget.target

15 revtarget.depends = $$SOURCES $$HEADERS $$FORMS $$PWD/examplel.pro
16 ~ QMAKE_DISTCLEAN += $$revtarget.target
1.1.3 Perfect solution (update every time the svn status changes)

The gmake project file example3.pro:

PRE_TARGETDEPS += $$0UT_PWD/revision.h

1

2

3 HEADERS = version.h

4 SOURCES = example.cpp
5 TARGET = example
6

7

8

9

LITERAL_DOLLAR = $
QMAKE_EXTRA_TARGETS += revtarget
revtarget.target = $$0UT_PWD/revision.h
10 revtarget.commands = Q@SVNVERSION=\\\"‘svnversion -n $$PWD\\\"; \

11 SUNFILEVERSION=‘if [-e $$revtarget.target]; then \

12 grep REVISION $$revtarget.target | \

13 awk \’{ print $${LITERAL_DOLLAR}$${LITERAL_DOLLAR}4 }\’ ; \
14 else echo unknown; fi;‘; \

15 if [$${LITERAL_DOLLAR}$${LITERAL_DOLLAR}SVNVERSION ==

16 $${LITERAL_DOLLAR}$${LITERAL_DOLLAR}SVNFILEVERSION]; \

http://www.ciselant.de/projects/programming/qmake_svnversion/example2.pro
http://www.ciselant.de/projects/programming/qmake_svnversion/example3.pro

17
18
19
20
21
22
23
24
25
26
27
28

— =
= O

© 00 J O Ut = W N =

S U W N

then \
echo \"svn status not changed - keep file $$revtarget.target\"; \
else \
echo \'"svn status changed - updating file $$revtarget.target\"; \
echo -e \"/* generated file (do not edit) */\\n\" \
\"$$LITERAL_HASH ifndef revision_h\\n\" \
\"$$LITERAL_HASH define revision_h 1\\n\" \
\"$$LITERAL_HASH define REVISION \\\"‘svnversion -n $$PWD‘\\\"\\n\" \
\"$SLITERAL_HASH endif\" > $$revtarget.target; \
fi
revtarget.depends = FORCE
QMAKE_DISTCLEAN += $$revtarget.target

This is the only solution which forces a recompile in case of a svn status
update without file update (e.g. ’svn update’ or ’svn commit’).

1.2 Define directive approach

This one uses a slightly different file example.cpp (version.h is recycled un-
changed) with changes to print a given defined '"REVISION’ string (or 'un-
known’ otherwise):

#include "version.h"
#include <stdio.h>

#ifndef REVISION
#define REVISION '"unknown"
#endif

int main(int argc, charx argv []) {
printf ("version: %s-build-%s\n", VERSION, REVISION);
return O;

1.2.1 Simple define based solution

The define for '/REVISION’ is set on compile time (see line 1) of the qmake
project file example4.pro:

DEFINES += "REVISION=\\\"‘svnversion -n $$PWD‘\\\""

HEADERS = version.h
SOURCES = example.cpp
TARGET = example

http://www.ciselant.de/projects/programming/qmake_svnversion_define/example.cpp
http://www.ciselant.de/projects/programming/qmake_svnversion/version.h
http://www.ciselant.de/projects/programming/qmake_svnversion_define/example4.pro

This approach works only for very small projects (like the given example
project) with only one source file. It will fail to update the revision string
in case of a multi source file project if the main file does not depend on all
other ones.

	Qt qmake And Subversion svnversion
	Include file approaches
	Simple solution (update on every build)
	Better solution (update only in case a relevant file changed)
	Perfect solution (update every time the svn status changes)

	Define directive approach
	Simple define based solution

