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1 Qt gqmake And Subversion svnversion

! revision number as build /revision version

Incorporate a global Subversion
in a Qt2 project.

Subversion has the ability to substitute keywords® e.g. the keyword
'Revision’ in a file will be expanded to the last known revision in which
the file changed. If you want some GlobalRev as build/revision number
in your project some extra work has to be done using the Subversion tool
svnversion?.

The following describes four different solutions for a Qt gmake based
project checked into a Subversion repository. The first three solutions are
based on a generated header ‘revision.h’ included from the main file ’exam-
ple.cpp’. The fourth is based on a define directive at compile time.

1.1 Include file approaches

All three solutions are based on the same simple example files. A simple
include file version.h (with a given define for the version string):

#ifndef version_h
##define version_h
#define VERSION "1.2.3"
#endif
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A C++ file example.cpp with the main entry point printing the string ’ver-
sion: <version>-build-<revision>’ to stdout:

1 #include "version.h"

2 #include "revision.h"
3 #include <stdio.h>
4
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int main(int argc, char*x argv []1) {
printf ("version: %s-build-%s\n", VERSION, REVISION);
return O;
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1.1.1 Simple solution (update on every build)

The gqmake project file examplel.pro creates an up to date revision.h file
with svnversion generated revision string on every build:

PRE_TARGETDEPS += $$0UT_PWD/revision.h

1

2

3  HEADERS = version.h

4 SOURCES example.cpp
5  TARGET = example
6

7

8

9

QMAKE_EXTRA_TARGETS += revtarget
revtarget.target = $$0UT_PWD/revision.h
revtarget.commands = @echo \"updating file $$revtarget.target\"; \

10 echo -e \"/* generated file (do not edit) */\\n\" \

11 \"$$LITERAL_HASH ifndef revision_h\\n\" \

12 \"$$LITERAL_HASH define revision_h 1\\n\" \

13 \"$SLITERAL_HASH define REVISION \\\"‘svnversion -n $$PWD‘\\\"\\n\" \
14 \"$$LITERAL_HASH endif\" > $$revtarget.target

15  revtarget.depends = FORCE
16 ~ QMAKE_DISTCLEAN += $$revtarget.target

Example of a generated revision.h file:

/* generated file (do not edit) */
# ifndef revision_h

# define revision_h 1

# define REVISION "828"

# endif
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Example output:

version: 1.2.3-build-828

for a subversion working directory up to revision r828, or
1.2.3-build-828M

with local modifications.
The downside of this solution is the every time rebuild of the executable
because of the generated file revision.h’.


http://www.ciselant.de/projects/programming/qmake_svnversion/example1.pro
http://www.ciselant.de/projects/programming/qmake_svnversion/example_revision.h

1.1.2 Better solution (update only in case a relevant file changed)

The main thing changed is line 15, the dependency is changed from ’FORCE’
to '$$SOURCES $$HEADERS $$FORMS $$PWD /example2.pro’ (mind the
'$$PWD’ changes which are needed for an out of tree build). Now a new revi-
sion.h is generated each time one of the relevant source/header /forms/project
file is changed, see example2.pro:

PRE_TARGETDEPS += $$0UT_PWD/revision.h

1

2

3 HEADERS = $$PWD/version.h

4  SOURCES = $$PWD/example.cpp
5  TARGET = example
6

7

8

9

QMAKE_EXTRA_TARGETS += revtarget
revtarget.target = $$0UT_PWD/revision.h
revtarget.commands = @echo \"updating file $$revtarget.target\"; \

10 echo -e \"/* generated file (do not edit) */\\n\" \

11 \"$$LITERAL_HASH ifndef revision_h\\n\" \

12 \"$$LITERAL_HASH define revision_h 1\\n\" \

13 \"$SLITERAL_HASH define REVISION \\\"‘svnversion -n $$PWD‘\\\"\\n\" \
14 \"$$LITERAL_HASH endif\" > $$revtarget.target

15  revtarget.depends = $$SOURCES $$HEADERS $$FORMS $$PWD/examplel.pro
16 ~ QMAKE_DISTCLEAN += $$revtarget.target
1.1.3 Perfect solution (update every time the svn status changes)

The gmake project file example3.pro:

PRE_TARGETDEPS += $$0UT_PWD/revision.h

1

2

3  HEADERS = version.h

4  SOURCES = example.cpp
5  TARGET = example
6

7

8

9

LITERAL_DOLLAR = $
QMAKE_EXTRA_TARGETS += revtarget
revtarget.target = $$0UT_PWD/revision.h
10 revtarget.commands = Q@SVNVERSION=\\\"‘svnversion -n $$PWD\\\"; \

11 SUNFILEVERSION=‘if [ -e $$revtarget.target ]; then \

12 grep REVISION $$revtarget.target | \

13 awk \’{ print $${LITERAL_DOLLAR}$${LITERAL_DOLLAR}4 }\’ ; \
14 else echo unknown; fi;‘; \

15 if [ $${LITERAL_DOLLAR}$${LITERAL_DOLLAR}SVNVERSION ==

16 $${LITERAL_DOLLAR}$${LITERAL_DOLLAR}SVNFILEVERSION ]; \
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then \
echo \"svn status not changed - keep file $$revtarget.target\"; \
else \
echo \'"svn status changed - updating file $$revtarget.target\"; \
echo -e \"/* generated file (do not edit) */\\n\" \
\"$$LITERAL_HASH ifndef revision_h\\n\" \
\"$$LITERAL_HASH define revision_h 1\\n\" \
\"$$LITERAL_HASH define REVISION \\\"‘svnversion -n $$PWD‘\\\"\\n\" \
\"$SLITERAL_HASH endif\" > $$revtarget.target; \
fi
revtarget.depends = FORCE
QMAKE_DISTCLEAN += $$revtarget.target

This is the only solution which forces a recompile in case of a svn status
update without file update (e.g. ’svn update’ or ’svn commit’).

1.2 Define directive approach

This one uses a slightly different file example.cpp (version.h is recycled un-
changed) with changes to print a given defined '"REVISION’ string (or 'un-
known’ otherwise):

#include "version.h"
#include <stdio.h>

#ifndef REVISION
#define REVISION '"unknown"
#endif

int main(int argc, charx argv []) {
printf ("version: %s-build-%s\n", VERSION, REVISION);
return O;

1.2.1 Simple define based solution

The define for '/REVISION’ is set on compile time (see line 1) of the qmake
project file example4.pro:

DEFINES += "REVISION=\\\"‘svnversion -n $$PWD‘\\\""

HEADERS = version.h
SOURCES = example.cpp
TARGET = example
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This approach works only for very small projects (like the given example
project) with only one source file. It will fail to update the revision string
in case of a multi source file project if the main file does not depend on all
other ones.
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