About GCC printf optimization

Peter Seiderer

November 21, 2005

Abstract

As you may have noticed, your GCC compiled source code is not al-
ways calling the functions you wrote in the source code. This can easily
observed with printf in the hello world example. Starting from this some
more GCC optimizations will be examined and analyzed in detail.

1 Introduction

For a start we examine what the GCC' compiler [GCCa] will do with the hello
world example when different optimization level are used.

1 #include <stdio.h>

2 int main(int argc, char *argv([]) {
3 printf("hello world\n");

4 return O;

5 }

Figure 1: examplel.c

Take a look at the nm® output when compiled without optimization.

> gcc—3.3.6 -00 examplel.c
> nm --undefined-only a.out
W __gmon_start__
w _Jv_RegisterClasses
U __libc_start_main@QGLIBC_2.0
U printf@Q@GLIBC_2.0

As expected the dynamically linked executable a.out will call the function printf.
Now we compile the same source code with optimization on.

> gcc-3.3.6 -01 examplel.c
> nm --undefined-only a.out
W __gmon_start__

Inm - list symbols from object files

w _Jv_RegisterClasses
U __libc_start_main@QGLIBC_2.0
U puts@@GLIBC_2.0

The nm output indicates that puts is called instead of the original printf from
the source code. To verify this we take a look at the intermediate assembler

© 00 O U i W N

I e T e T e e T T
_ O © 00 O ULk W N~ O

© 00 N O U i W N

listing. First with optimization off.

> gcc-3.3.6 -00 -S examplel.c

Here the resulting examplel.s file:

.file "examplel.c"
.section .rodata
.LCO:
.string "hello world\n"
.text
.globl main
.type main, @function
main:
pushl Y%ebp
movl %esp, %ebp
subl $8, Jesp
andl $-16, %esp
movl $0, %eax
subl %heax, hesp
movl $.LCO, (%esp)
call printf
movl $0, %eax
leave
ret
.size main, .-main
.ident "GCC: (GNU) 3.3.6"

Second with optimization on.

> gcc-3.3.6 -01 -S examplel.c

And the resulting examplel.s file:

.file "examplel.c"
.section .rodata
.LCO:
.string "hello world"
.text
.globl main
.type main, @function
main:
pushl Y%ebp

10
11
12
13
14
15
16
17
18
19
20

1
2
3
4

movl %hesp, %hebp
subl $8, Jesp
andl $-16, Yesp
movl $.LCO, (%esp)
call puts

movl $0, %eax

movl %ebp, %esp
popl hebp

ret

.size main, .-main

.ident "GCC: (GNU) 3.3.6"

The string constant in line 4 changed from ”hello world\n” to ”hello world”.
The call printf on line 16 changed to call puts on line 14.

2 Optimization according to the source code

Where is the optimization implemented in the GCC source code:
e GCC-3.3.6: gee/c-common.c line 1324
o GCC(C-3.4.4: gce/builtins.c line 4651
o GCC-4.0.2: gee/builtins.c:4654.

Step by step guide along the source code lines (for GCC-3.4.4). In the following
examples we will omit the first two lines

W __gmon_start__
w _Jv_RegisterClasses

of the nm output.

2.1 No optimization if return code is used
No optimization if the return code of printf is evaluated [line 4662-4664].

#include <stdio.h>

int main(int argc, char *argv[]) {
return printf("hello world\n");

}

Figure 2: example2.c

> gcc-3.4.4 -01 example2.c

> nm --undefined-only a.out
U __libc_start_main@@GLIBC_2.0
U printf@@GLIBC_2.0

2.2 Format string must be a literal constant

The format string must be a literal string constant [line 4666-4677).

1 #include <stdio.h>

2 static const char *f() {

3 return "hello world\n";

4 }

5 int main(int argc, char *argv([]) {
6 printf(£0);

7 return O;

8 }

Figure 3: example3.c

> gcc-3.4.4 -01 example3.c

> nm --undefined-only a.out
U __libc_start_main@QGLIBC_2.0
U printf@Q@GLIBC_2.0

Note that the GCC-4.0.2 is smart enough to optimize this example if an opti-

mization level greater or even —0O2 is given.

> gcc-4.0.2 -Wall -02 example3.c

nm --undefined-only a.out
U __libc_start_main@QGLIBC_2.0
U puts@@GLIBC_2.0

2.3 "%s\n”

A printf call with the format string ”%s\n” [line 4679-4687] is converted to a
puts() call.

printf ("%s\n", "hello world"); // converted to puts("hello world");

1 #include <stdio.h>

2 int main(int argc, char *argv([]) {
3 printf ("%s\n", "hello world");

4 return 0O;

5 }

Figure 4: exampled.c

> gcc-3.4.4 -01 exampled.c

> nm --undefined-only a.out
U __libc_start_main@@GLIBC_2.0
U puts@@GLIBC_2.0

2.4 77%677

A printf call with the format string ”%c” [line 4688-4696] is converted to a
putchar() call.

printf ("%c", ’A’); // converted to putchar(’A’);

#include <stdio.h>

int main(int argc, char *argv[]) {
printf ("%c", ’A’);
return O;

}

O W N =

Figure 5: exampleb.c

> gcc-3.4.4 -01 exampleb.c

> nm --undefined-only a.out
U __libc_start_main@QGLIBC_2.0
U putchar@QGLIBC_2.0

2.5 No % in format string

No optimization if one or more ‘%’ are detected in the format string [line 4699-
4701].

#include <stdio.h>

int main(int argc, char *argv[]) {
printf ("hello%%world\n");
return O;

}

U W N =

Figure 6: example6.c

> gcc-3.4.4 -01 example6.c

> nm --undefined-only a.out
U __libc_start_main@QGLIBC_2.0
U printf@OGLIBC_2.0

2.6 The empty format string

Omit printf call if format string is empty [line 4706-4708].
printf(""); // converted to empty statement

> gcc-3.4.4 -01 example7.c
> nm --undefined-only a.out
U __libc_start_main@@GLIBC_2.0

#include <stdio.h>

int main(int argc, char *argv[]) {
printf("");
return O;

}

O W N =

Figure 7: example7.c

2.7 The one character string

A printf call with a format string of length one [line 4709-4718] is converted to
putchar() call.

printf("A"); // converted to putchar(’A’);

#include <stdio.h>

int main(int argc, char *argv[]) {
printf ("A");
return O;

}

T W N =

Figure 8: example8.c

> gcc-3.4.4 -01 example8.c

> nm --undefined-only a.out
U __libc_start_main@QGLIBC_2.0
U putchar@QGLIBC_2.0

2.8 The string not ending with "\n’
No optimization if the string is not ending with "\n’ [line 4721-4739].

1 #include <stdio.h>

2 int main(int argc, char *argv([]) {
3 printf("hello world");

4 return O;

5 }

Figure 9: example9.c

> gcc-3.4.4 -01 example9.c

> nm --undefined-only a.out
U __libc_start_main@@GLIBC_2.0
U printf@Q@GLIBC_2.0

S Ot W N

2.9 The string ending with "\n/

A printf call with a simple format string ending with "\n’ [line 4721-4739] is
converted to a puts() call.

printf ("hello world\n"); // converted to puts("hello world");

#include <stdio.h>

int main(int argc, char *argv[]) {
printf("hello world\n");
return O;

}
Figure 10: examplelO.c

> gcc-3.4.4 -01 examplelO.c

> nm --undefined-only a.out
U __libc_start_main@QGLIBC_2.0
U puts@@GLIBC_2.0

3 Fine differences

3.1 %s and NULL argument

Example taken from [BUG]. The glibc [GLIa] printf implementation has the
nice feature to print ’(null)’ in case of the format string '%s’ and a pointer to
NULL is given as argument.

#include <stdio.h>

int main(int argc, char *argv[]) {
char *p = NULL;
printf ("%s\n", p);
return O;

}

Figure 11: bug-15685.c

> gcc-3.3.6 -Wall -00 bug_15685.c
./a.out
(null)

> gcc-3.3.6 -Wall -01 bug_15685.c
./a.out
Segmentation fault

As stated in the bug report by Andrew Pinski this is not a bug, because both
behaviors are allowed by the standard. If the standard states undefined behavior
the compiler and/or library is free in what to implement. You should not depend
on the one or the other behavior in a portable program.

From the glibc manual: “If you accidentally pass a null pointer as the argu-
ment for a %s conversion, the GNU library prints it as (null). We think this is
more useful than crashing. But it’s not good practice to pass a null argument
intentionally.” [GLIb].

4 Comparison of GCC versions

In figure 12 note that the GCC-4.0.2 is doing this optimization even if -O0 (no
optimization) is given on the command line.

compiler -00 | -01 | -02 | -03
GCC-3.3.6 | printf | puts | puts | puts
GCC-3.4.4 | printf | puts | puts | puts
GCC-4.0.2 | puts | puts | puts | puts

Figure 12: Results for examplel.c

To get the original printf call with GCC-4.0.2 you must provide —fno —
builtin or — fno — builtin — printf as command line argument.

> gcc-4.0.2 -fno-builtin -00 examplel.c
> nm --undefined-only a.out

W __gmon_start__
w _Jv_RegisterClasses
U __libc_start_main@QGLIBC_2.0
U

printf@QGLIBC_2.0

> gcc-4.0.2 -fno-builtin-printf -00 examplel.c
> nm --undefined-only a.out

W __gmon_start__

w _Jv_RegisterClasses

U __libc_start_main@@GLIBC_2.0

U printf@OGLIBC_2.0

5 Performance advantage

Some simple measurement? for the hello world example.

20n AMD Athlon(TM) XP 1800+ system

}

#include <stdio.h>
int main(int argc, char *argv[]) {

= 0; i < 10000000; i++) {

1

2

3 int i;

4 for(i

5

6 }

7 return O;
8

Figure 13: loop_printf.c

printf ("hello world\n");

> gcc—3.3.6 -Wall -00 loop_printf.c

> time ./a.out > /dev/null
real Om2.197s
user Om2.186s
sys 0m0.010s

> gcc-3.3.6 -Wall -01 loop_printf.c

> time ./a.out > /dev/null
real Om1.007s
user Om0.997s
sys Om0.009s

In figure 14 we see that the puts loop consumes roughly half the time of the

printf loop.

GCC-3.3.6

GCC-3.4.4

GCC-4.0.2

-00

real Om2.197s
user O0m2.186s
sys 0m0.010s

real Om2.164s
user 0m2.147s
sys 0m0.015s

real Om1.026s
user Om1.012s
sys 0m0.014s

-01

real Om1.007s
user 0m0.997s
sys 0m0.009s

real Om1.006s
user 0m0.996s
sys 0m0.011s

real Om1.007s
user 0m0.998s
sys 0m0.010s

Figure 14: Times for loop_printf.c

6 Future work

Document the remaining optimizations mentioned in gec/builtins.c. Explore

advanced optimization like suggested in [GCCb].

References

[BUG]

http://gce.gnu.org/bugzilla/show bug.cgi?id=15685.

[GCCa) http://gcc.gnu.org.

[GCCD] http://gce.gnu.org/ml/gee-patches/1999-01/msg00187. html.

[GLIa] http://www.gnu.org/software/libc/libc.html.

[GLIb] http://www.gnu.org/software/libc/manual /html mono/libe.html.gz#0ther%200utput%20Conve

10

4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686

7 Appendix

7.1

Source code gcc-3.4.4/gce/builtins.c

/* Expand a call to printf or printf_unlocked with argument list ARGLIST.

Return O if a normal call should be emitted rather than transforming
the function inline. If convenient, the result should be placed in
TARGET with mode MODE. UNLOCKED indicates this is a printf_unlocked
call. x*/

static rtx
expand_builtin_printf (tree arglist, rtx target, enum machine_mode mode,

{

bool unlocked)

tree fn_putchar = unlocked
? implicit_built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED]
implicit_built_in_decls[BUILT_IN_PUTCHAR];
tree fn_puts = unlocked 7 implicit_built_in_decls[BUILT_IN_PUTS_UNLOCKED]
implicit_built_in_decls[BUILT_IN_PUTS];
const char *fmt_str;
tree fn, fmt, arg;

/* If the return value is used, don’t do the transformation. x*/
if (target != constO_rtx)
return O;

/* Verify the required arguments in the original call. x*/
if (! arglist)
return O;
fmt = TREE_VALUE (arglist);
if (TREE_CODE (TREE_TYPE (fmt)) != POINTER_TYPE)
return O;
arglist = TREE_CHAIN (arglist);

/* Check whether the format is a literal string constant. */
fmt_str = c_getstr (fmt);
if (fmt_str == NULL)

return O;

/* If the format specifier was "Ys\n", call
if (strcmp (fmt_str, "%s\n") == 0)
{
if (! arglist
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) !'= POINTER_TYPE
|| TREE_CHAIN (arglist))
return O;
fn = fn_puts;

_builtin_puts(arg). */

11

4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732

}
/* If the format specifier was "Jc", call __builtin_putchar(arg). =/
else if (strcmp (fmt_str, "Y%c") == 0)
{
if (! arglist

|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) !'= INTEGER_TYPE

|| TREE_CHAIN (arglist))

return O;
fn = fn_putchar;
}
else
{
/* We can’t handle anything else with J args or %% ... yet. */
if (strchr (fmt_str, ’%’))
return O;

if (arglist)
return O;

/* If the format specifier was "", printf does nothing. */
if (fmt_str[0] == ’\0’)

return constO_rtx;
/* If the format specifier has length of 1, call putchar. */
if (fmt_str[1] == ’\0’)

{

/* Given printf("c"), (where c is any one character,)
convert "c"[0] to an int and pass that to the replacement
function. */

arg = build_int_2 (fmt_str[0], 0);

arglist = build_tree_list (NULL_TREE, arg);

fn = fn_putchar;

else

{

/* If the format specifier was "string\n", call puts("string").

size_t len = strlen (fmt_str);
if (fmt_str[len - 1] == ’\n’)
{
/* Create a NUL-terminated string that’s one char shorter
than the original, stripping off the trailing ’\n’. */
char *newstr = (char *) alloca (len);
memcpy (newstr, fmt_str, len - 1);
newstr[len - 1] = 0;

arg = build_string_literal (len, newstr);
arglist = build_tree_list (NULL_TREE, arg);

12

*/

4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746

fn = fn_puts;
}
else
/* We’d like to arrange to call fputs(string,stdout) here,
but we need stdout and don’t have a way to get it yet.
return O;

}

if (!'fn)
return O;
return expand_expr (build_function_call_expr (fn, arglist),
target, mode, EXPAND_NORMAL);

13

*/

