
About GCC printf optimization

Peter Seiderer

November 21, 2005

Abstract

As you may have noticed, your GCC compiled source code is not al-
ways calling the functions you wrote in the source code. This can easily
observed with printf in the hello world example. Starting from this some
more GCC optimizations will be examined and analyzed in detail.

1 Introduction

For a start we examine what the GCC compiler [GCCa] will do with the hello
world example when different optimization level are used.

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 printf("hello world\n");

4 return 0;

5 }

Figure 1: example1.c

Take a look at the nm1 output when compiled without optimization.

> gcc-3.3.6 -O0 example1.c

> nm --undefined-only a.out

w __gmon_start__

w _Jv_RegisterClasses

U __libc_start_main@@GLIBC_2.0

U printf@@GLIBC_2.0

As expected the dynamically linked executable a.out will call the function printf.
Now we compile the same source code with optimization on.

> gcc-3.3.6 -O1 example1.c

> nm --undefined-only a.out

w __gmon_start__

1nm - list symbols from object files

1

w _Jv_RegisterClasses

U __libc_start_main@@GLIBC_2.0

U puts@@GLIBC_2.0

The nm output indicates that puts is called instead of the original printf from
the source code. To verify this we take a look at the intermediate assembler
listing. First with optimization off.

> gcc-3.3.6 -O0 -S example1.c

Here the resulting example1.s file:

1 .file "example1.c"

2 .section .rodata

3 .LC0:

4 .string "hello world\n"

5 .text

6 .globl main

7 .type main, @function

8 main:

9 pushl %ebp

10 movl %esp, %ebp

11 subl $8, %esp

12 andl $-16, %esp

13 movl $0, %eax

14 subl %eax, %esp

15 movl $.LC0, (%esp)

16 call printf

17 movl $0, %eax

18 leave

19 ret

20 .size main, .-main

21 .ident "GCC: (GNU) 3.3.6"

Second with optimization on.

> gcc-3.3.6 -O1 -S example1.c

And the resulting example1.s file:

1 .file "example1.c"

2 .section .rodata

3 .LC0:

4 .string "hello world"

5 .text

6 .globl main

7 .type main, @function

8 main:

9 pushl %ebp

2

10 movl %esp, %ebp

11 subl $8, %esp

12 andl $-16, %esp

13 movl $.LC0, (%esp)

14 call puts

15 movl $0, %eax

16 movl %ebp, %esp

17 popl %ebp

18 ret

19 .size main, .-main

20 .ident "GCC: (GNU) 3.3.6"

The string constant in line 4 changed from ”hello world\n” to ”hello world”.
The call printf on line 16 changed to call puts on line 14.

2 Optimization according to the source code

Where is the optimization implemented in the GCC source code:

• GCC-3.3.6: gcc/c-common.c line 1324

• GCC-3.4.4: gcc/builtins.c line 4651

• GCC-4.0.2: gcc/builtins.c:4654.

Step by step guide along the source code lines (for GCC-3.4.4). In the following
examples we will omit the first two lines

w __gmon_start__

w _Jv_RegisterClasses

of the nm output.

2.1 No optimization if return code is used

No optimization if the return code of printf is evaluated [line 4662-4664].

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 return printf("hello world\n");

4 }

Figure 2: example2.c

> gcc-3.4.4 -O1 example2.c

> nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

U printf@@GLIBC_2.0

3

2.2 Format string must be a literal constant

The format string must be a literal string constant [line 4666-4677].

1 #include <stdio.h>

2 static const char *f() {

3 return "hello world\n";

4 }

5 int main(int argc, char *argv[]) {

6 printf(f());

7 return 0;

8 }

Figure 3: example3.c

> gcc-3.4.4 -O1 example3.c

> nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

U printf@@GLIBC_2.0

Note that the GCC-4.0.2 is smart enough to optimize this example if an opti-
mization level greater or even −O2 is given.

> gcc-4.0.2 -Wall -O2 example3.c

nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

U puts@@GLIBC_2.0

2.3 ”%s\n”

A printf call with the format string ”%s\n” [line 4679-4687] is converted to a
puts() call.

printf("%s\n", "hello world"); // converted to puts("hello world");

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 printf("%s\n", "hello world");

4 return 0;

5 }

Figure 4: example4.c

> gcc-3.4.4 -O1 example4.c

> nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

U puts@@GLIBC_2.0

4

2.4 ”%c”

A printf call with the format string ”%c” [line 4688-4696] is converted to a
putchar() call.

printf("%c", ’A’); // converted to putchar(’A’);

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 printf("%c", ’A’);

4 return 0;

5 }

Figure 5: example5.c

> gcc-3.4.4 -O1 example5.c

> nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

U putchar@@GLIBC_2.0

2.5 No ′%′ in format string

No optimization if one or more ′%′ are detected in the format string [line 4699-
4701].

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 printf("hello%%world\n");

4 return 0;

5 }

Figure 6: example6.c

> gcc-3.4.4 -O1 example6.c

> nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

U printf@@GLIBC_2.0

2.6 The empty format string

Omit printf call if format string is empty [line 4706-4708].

printf(""); // converted to empty statement

> gcc-3.4.4 -O1 example7.c

> nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

5

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 printf("");

4 return 0;

5 }

Figure 7: example7.c

2.7 The one character string

A printf call with a format string of length one [line 4709-4718] is converted to
putchar() call.

printf("A"); // converted to putchar(’A’);

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 printf("A");

4 return 0;

5 }

Figure 8: example8.c

> gcc-3.4.4 -O1 example8.c

> nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

U putchar@@GLIBC_2.0

2.8 The string not ending with ′\n′
No optimization if the string is not ending with ′\n′ [line 4721-4739].

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 printf("hello world");

4 return 0;

5 }

Figure 9: example9.c

> gcc-3.4.4 -O1 example9.c

> nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

U printf@@GLIBC_2.0

6

2.9 The string ending with ′\n′
A printf call with a simple format string ending with ′\n′ [line 4721-4739] is
converted to a puts() call.

printf("hello world\n"); // converted to puts("hello world");

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 printf("hello world\n");

4 return 0;

5 }

Figure 10: example10.c

> gcc-3.4.4 -O1 example10.c

> nm --undefined-only a.out

U __libc_start_main@@GLIBC_2.0

U puts@@GLIBC_2.0

3 Fine differences

3.1 %s and NULL argument

Example taken from [BUG]. The glibc [GLIa] printf implementation has the
nice feature to print ’(null)’ in case of the format string ′%s′ and a pointer to
NULL is given as argument.

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 char *p = NULL;

4 printf("%s\n", p);

5 return 0;

6 }

Figure 11: bug 15685.c

> gcc-3.3.6 -Wall -O0 bug_15685.c

./a.out

(null)

> gcc-3.3.6 -Wall -O1 bug_15685.c

./a.out

Segmentation fault

7

As stated in the bug report by Andrew Pinski this is not a bug, because both
behaviors are allowed by the standard. If the standard states undefined behavior
the compiler and/or library is free in what to implement. You should not depend
on the one or the other behavior in a portable program.

From the glibc manual: “If you accidentally pass a null pointer as the argu-
ment for a %s conversion, the GNU library prints it as (null). We think this is
more useful than crashing. But it’s not good practice to pass a null argument
intentionally.” [GLIb].

4 Comparison of GCC versions

In figure 12 note that the GCC-4.0.2 is doing this optimization even if -O0 (no
optimization) is given on the command line.

compiler -O0 -O1 -O2 -O3
GCC-3.3.6 printf puts puts puts
GCC-3.4.4 printf puts puts puts
GCC-4.0.2 puts puts puts puts

Figure 12: Results for example1.c

To get the original printf call with GCC-4.0.2 you must provide −fno −
builtin or −fno− builtin− printf as command line argument.

> gcc-4.0.2 -fno-builtin -O0 example1.c

> nm --undefined-only a.out

w __gmon_start__

w _Jv_RegisterClasses

U __libc_start_main@@GLIBC_2.0

U printf@@GLIBC_2.0

> gcc-4.0.2 -fno-builtin-printf -O0 example1.c

> nm --undefined-only a.out

w __gmon_start__

w _Jv_RegisterClasses

U __libc_start_main@@GLIBC_2.0

U printf@@GLIBC_2.0

5 Performance advantage

Some simple measurement2 for the hello world example.

2On AMD Athlon(TM) XP 1800+ system

8

1 #include <stdio.h>

2 int main(int argc, char *argv[]) {

3 int i;

4 for(i = 0; i < 10000000; i++) {

5 printf("hello world\n");

6 }

7 return 0;

8 }

Figure 13: loop printf.c

> gcc-3.3.6 -Wall -O0 loop_printf.c

> time ./a.out > /dev/null

real 0m2.197s

user 0m2.186s

sys 0m0.010s

> gcc-3.3.6 -Wall -O1 loop_printf.c

> time ./a.out > /dev/null

real 0m1.007s

user 0m0.997s

sys 0m0.009s

In figure 14 we see that the puts loop consumes roughly half the time of the
printf loop.

GCC-3.3.6 GCC-3.4.4 GCC-4.0.2
-O0 real 0m2.197s real 0m2.164s real 0m1.026s

user 0m2.186s user 0m2.147s user 0m1.012s
sys 0m0.010s sys 0m0.015s sys 0m0.014s

-O1 real 0m1.007s real 0m1.006s real 0m1.007s
user 0m0.997s user 0m0.996s user 0m0.998s
sys 0m0.009s sys 0m0.011s sys 0m0.010s

Figure 14: Times for loop printf.c

6 Future work

Document the remaining optimizations mentioned in gcc/builtins.c. Explore
advanced optimization like suggested in [GCCb].

References

[BUG] http://gcc.gnu.org/bugzilla/show bug.cgi?id=15685.

9

[GCCa] http://gcc.gnu.org.

[GCCb] http://gcc.gnu.org/ml/gcc-patches/1999-01/msg00187.html.

[GLIa] http://www.gnu.org/software/libc/libc.html.

[GLIb] http://www.gnu.org/software/libc/manual/html mono/libc.html.gz#Other%20Output%20Conversions.

10

7 Appendix

7.1 Source code gcc-3.4.4/gcc/builtins.c

4645 /* Expand a call to printf or printf_unlocked with argument list ARGLIST.

4646 Return 0 if a normal call should be emitted rather than transforming

4647 the function inline. If convenient, the result should be placed in

4648 TARGET with mode MODE. UNLOCKED indicates this is a printf_unlocked

4649 call. */

4650 static rtx

4651 expand_builtin_printf (tree arglist, rtx target, enum machine_mode mode,

4652 bool unlocked)

4653 {

4654 tree fn_putchar = unlocked

4655 ? implicit_built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED]

4656 : implicit_built_in_decls[BUILT_IN_PUTCHAR];

4657 tree fn_puts = unlocked ? implicit_built_in_decls[BUILT_IN_PUTS_UNLOCKED]

4658 : implicit_built_in_decls[BUILT_IN_PUTS];

4659 const char *fmt_str;

4660 tree fn, fmt, arg;

4661

4662 /* If the return value is used, don’t do the transformation. */

4663 if (target != const0_rtx)

4664 return 0;

4665

4666 /* Verify the required arguments in the original call. */

4667 if (! arglist)

4668 return 0;

4669 fmt = TREE_VALUE (arglist);

4670 if (TREE_CODE (TREE_TYPE (fmt)) != POINTER_TYPE)

4671 return 0;

4672 arglist = TREE_CHAIN (arglist);

4673

4674 /* Check whether the format is a literal string constant. */

4675 fmt_str = c_getstr (fmt);

4676 if (fmt_str == NULL)

4677 return 0;

4678

4679 /* If the format specifier was "%s\n", call __builtin_puts(arg). */

4680 if (strcmp (fmt_str, "%s\n") == 0)

4681 {

4682 if (! arglist

4683 || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE

4684 || TREE_CHAIN (arglist))

4685 return 0;

4686 fn = fn_puts;

11

4687 }

4688 /* If the format specifier was "%c", call __builtin_putchar(arg). */

4689 else if (strcmp (fmt_str, "%c") == 0)

4690 {

4691 if (! arglist

4692 || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE

4693 || TREE_CHAIN (arglist))

4694 return 0;

4695 fn = fn_putchar;

4696 }

4697 else

4698 {

4699 /* We can’t handle anything else with % args or %% ... yet. */

4700 if (strchr (fmt_str, ’%’))

4701 return 0;

4702

4703 if (arglist)

4704 return 0;

4705

4706 /* If the format specifier was "", printf does nothing. */

4707 if (fmt_str[0] == ’\0’)

4708 return const0_rtx;

4709 /* If the format specifier has length of 1, call putchar. */

4710 if (fmt_str[1] == ’\0’)

4711 {

4712 /* Given printf("c"), (where c is any one character,)

4713 convert "c"[0] to an int and pass that to the replacement

4714 function. */

4715 arg = build_int_2 (fmt_str[0], 0);

4716 arglist = build_tree_list (NULL_TREE, arg);

4717 fn = fn_putchar;

4718 }

4719 else

4720 {

4721 /* If the format specifier was "string\n", call puts("string"). */

4722 size_t len = strlen (fmt_str);

4723 if (fmt_str[len - 1] == ’\n’)

4724 {

4725 /* Create a NUL-terminated string that’s one char shorter

4726 than the original, stripping off the trailing ’\n’. */

4727 char *newstr = (char *) alloca (len);

4728 memcpy (newstr, fmt_str, len - 1);

4729 newstr[len - 1] = 0;

4730

4731 arg = build_string_literal (len, newstr);

4732 arglist = build_tree_list (NULL_TREE, arg);

12

4733 fn = fn_puts;

4734 }

4735 else

4736 /* We’d like to arrange to call fputs(string,stdout) here,

4737 but we need stdout and don’t have a way to get it yet. */

4738 return 0;

4739 }

4740 }

4741

4742 if (!fn)

4743 return 0;

4744 return expand_expr (build_function_call_expr (fn, arglist),

4745 target, mode, EXPAND_NORMAL);

4746 }

13

